UTRS3227 Preliminary CMOS IC

+3.0V TO +5.5V POWER SUPPLY, 1MBPS, RS-232 LINE DRIVER/RECEIVER

DESCRIPTION

The UTC **UTRS3227** consists of 1 driver and 1 receiver. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.0V~+5.5V power supply. A guaranteed data rate of 1Mbps for high speed applications such as communicating with ISDN modems.

The UTC **UTRS3227** achieves 1µA supply current in shutdown condition. The UTC **UTRS3227** automatically enter a low-power shutdown mode when the RS-232 cable is disconnected or the transmitters of the connected peripherals are inactive, and the UART driving the transmitter inputs is inactive for more than 30 seconds. The UTC **UTRS3227** turn on again when they sense a valid transition at any transmitter or receiver input.

The UTC **UTRS3227** requires only $0.1\mu\text{F}$ capacitors in 3.3V operation, and can operate from input voltages ranging from +3.0V ~+5.5V. it is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

■ FEATURES

- * Operates With 3.0V to 5.5V Power Supply
- * One Driver and one Receiver
- * Operates Up To 1Mbps
- * Designed to Transmit at a Data Rate of 1Mbps
- * Low Standby Current (1µA Typical)
- * External Capacitors (4×0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- * Serial-Mouse Drivability
- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins

■ ORDERING INFORMATION

Ordering	Number	Dealsage	Deelder	
Lead Free	Halogen Free	Package	Packing	
UTRS3227L-R16-R	UTRS3227G-R16-R	SSOP-16	Tape Reel	

<u>www.unisonic.com.tw</u> 1 of 9

■ MARKING

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	READY	Ready to Transmit Output, Active High. READY is enabled high when V- goes
<u>'</u>	INLADI	below -4V and the device is ready to transmit.
2	C1+	Positive terminal of the voltage doubler charge-pump capacitor.
3	V+	+5.5V generated by the charge pump.
4	C1-	Negative terminal of the voltage doubler charge-pump capacitor.
5	C2+	Positive terminal of inverting charge-pump capacitor.
6	C2-	Negative terminal of inverting charge-pump capacitor.
7	V-	-5.5V generated by the charge pump.
8	R _{1IN}	RS-232 Receiver Input.
9	R _{10UT}	TTL/CMOS Receiver Output.
10		Output of the valid signal detector. Indicates if a valid RS-232 level is present on
10		receiver inputs logic "1".
11	T_{1IN}	TTL/CMOS Transmitter Input.
12	FORCEON	Drive high to override automatic circuitry keeping transmitters on (FORCEOFF must
12	FORCEON	be high) (Table 2).
13	T _{10UT}	RS-232 Transmitter Output.
14	GND	Ground.
15	V _{cc}	+3.0V ~ +5.5V Supply Voltage.
16	FORCEOUT	Drive low to shut down transmitters and on-board power supply. This over-rides all
16	FORCEOFF	automatic circuitry and FORCEON (Table 2).

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Vcc		V_{CC}	+6.0	V
V+ (Note 2)		V+	+7.0	V
V- (Note 2)		V-	-7.0	\ \
V+ + V- (Note 2)		V_{PUMP}	+13.0	V
Input Voltages	T1IN, FORCEOFF, FORCEON	V _{IN}	+6.0	>
	R1IN		±25	V
	T10UT		±13.2	V
Output Voltages R1OUT, INVALID, RE		V _{ОUТ}	V _{CC}	V
Short-Circuit Duration T10UT		SC	Continuous	
Power Dissipation(T _A =25°	C)	P_{D}	870	mW
Operating Temperature		T_{OPR}	-40 ~ +85	°C
Storage Temperature		T_{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

 $(V_{CC}$ =+3.0V~+5.5V, C1~C4=0.1µF (Note 2), T_A = T_{MIN} to T_{MAX} , unless otherwise specified)

PARAMETER	₹	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT		
DC CHARACTERISTICS										
Supply Current, Shutdown		I _{SHDN}	V _{CC} =3.3V	FORCE	II R_IN open, ORCEOFF =V _{CC} , ORCEON=GND			1.0	10	μA
		JOHEN	or 5.0V,	FORCEOFF =GND, All R IN=GND			1.0	10	μA	
Supply Current, Shutdown Disabled		Icc		FORCEON= FORCEOFF =V _{CC} , no load			0.3	2.0	mA	
LOGIC INPUTS										
	Low	V_{LGL}	T1IN, FOR	CEON,	FORCEC	FF			8.0	V
Input Logic Threshold			T1IN, FOR	CEON,		$V_{CC} = 3.3V$	2.0			.,
	High	V _{LGH} FORCEOFF V _{CC} = 5.0V		2.4			V			
Input Leakage Current		I _{IN(LK)}	T1IN, FOR	FORCEON, FORCEOFF			±0.01	±1.0	μA	
RECEIVER OUTPUTS	3									
Output Leakage Curre	nt	I _{ROUT(LK)}	Receivers	disabled				±0.05	±10	μΑ
Output Voltage	Low	V_{ROUTL}	I _{OUT} = 1.6mA				0.4	V		
Output Voltage	High	V_{ROUTH}	I _{OUT} = -1.0mA			V _{CC} - 0.6 V _{CC} - 0.1			V	
AUTOSHUTDOWN (F	ORCEON=	GND, FOF	CEOFF =Vc	c)						
Receiver Input Thresholds to	Enabled	$V_{R(EN)}$	Fig.1 Positive threshold Negative threshold		-2.7		2.7	V		
Transmitters	Disabled	V _{R(DIS)}	1μA supply current, Fig.1		-0.3		0.3	V		
INVALID, READY	Low	V_{INVL}	I _{OUT} =1.6mA				0.4	V		
Output Voltage	High	V_{INVH}			V _{CC} - 0.6			V		
Receiver or Transmitter Edge to Transmitters Enabled		t _{WU}	Fig.2			100		μs		
Receiver or Transmitter Transmitters Shutdown	-	t _{AUTOSHDN}	Fig.2		15	30	60	s		

^{2.} V+ and V- can have maximum magnitudes of 7.0V, but their absolute difference cannot exceed 13.0V.

■ ELECTRICAL CHARACTERISTICS (Cont.)

 $(V_{CC}$ =+3.0V~+5.5V, C1~C4=0.1µF (Note 2), T_A = T_{MIN} to T_{MAX} , Unless Otherwise Specified)

	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
High	t _{INVH}	-Fig.2		1.0		μs		
Low	t			30		110		
LOW	INVL			30		μs		
	1	I		1	1	1		
	V_{RR}				25	V		
	VRINI	11,=75°(V		
	TAINE	V _{CC} =5.0V	0.8					
	VRINH	11,=95°(.				_V		
		V _{CC} =5.0V			2.4			
				0.5		V		
	V _{RINRES}	T _A =25°C	3	5	7	kΩ		
<u>'S</u>								
	VTOLITOW	· ·	+5 O	+5.4		l v l		
	VIOUISW		±0.0	10.7		v		
	VTOUTDEO	V _{CC} = V+=V-=0V,		10M		Ω		
	VIOUIRES	Transmitter output=±2V		TOW		32		
ent	I _{TSC}			±35	±60	mA		
	ITOUT(U)				+25	μΑ		
	11001(LK)	Transmitters disabled			120	μ, ,		
rics								
		R_L =3k Ω , C_L =1000pF, one transmitter	250			kbps		
		switching	230			Kuha		
	DR					kbps		
		<u> </u>				Kops		
		Vcc=4.5V to 5.5V, $R_L=3k\Omega$, $C_L=250pF$,				kbps		
		one transmitter switching				KDP3		
lav	t _{PHL}	1		0.15		μs		
ıay	t _{PLH}	C _L =150pF		0.15		μο		
Receiver Output Time Enable Disable		Normal operation		200		ns		
				200		ns		
Transmitter Skew		tphl - tplh		25		ns		
Receiver Skew t _{RS}		tphl - tplh		50		ns		
				V _{CC} =3.3V, T _A =25°C,				
		1.00 , . , . =,						
ato	QD.		10		150	\//uc		
Rate	SR		10		150	V/µs		
	Low TICS lay Enable	VRR	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Various Var		

Notes: 1. Typical values are at T_A=25°C.

^{2.} C1~C4=0.1 μ F, measured at 3.3V±10%. C1=0.047 μ F, C2~C4=0.33 μ F, measured at 5.0V ±10%.

DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC **UTRS3227** consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.0V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitter

UTC **UTRS3227**'s transmitter is inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 1Mbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software.

Transmitter can be paralleled to drive multiple receivers or mouse. When FORCEOFF is driven to ground, or shutdown circuitry senses invalid voltage levels at receiver input, the transmitter is disabled and the output are forced into a high-impedance state.

RS-232 Receiver

The UTC **UTRS3227**'s receiver convert RS-232 signals to CMOS-logic output levels. The receiver has one inverting three-state output. In shutdown or in autoshutdown, the **UTRS3227**'s receiver is active.

The UTC **UTRS3227** features an INVALID output that is enabled low when no valid RS-232 voltage levels have been detected on receiver input. Because INVALID indicates the receiver input's condition, it is independent of FORCEON and FORCEOFF states

Table 1. INVALID Control Truth Table

RS-232 SIGNAL PRESENT AT RECEIVER INPUT	INVALID OUTPUT		
YES	High		
NO	Low		

Shutdown Function

 $\overline{\text{FORCEOFF}}$ is high. When the UTC **UTRS3227** do not sense a valid signal transition on any receiver and transmitter input for 30sec, the on-board charge pumps are shutdown, reducing supply current to 1μA. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters are turned off. The system turns on again when a valid transition is applied to any RS-232 receiver or transmitter input (Table 2). As a result, the system saves power without changes to the existing BIOS or operating system. $\overline{\text{INVALID}}$ indicates the receiver inputs' condition, when using shutdown function, the $\overline{\text{INVALID}}$ output is high when the device is on and low when the device is shut down.

Table 2. Shutdown Logic Control Truth Table

OPERATION STATUS	FORCEOFF INPUT	FORCEON INPUT	Valid signal at Transmitter or Receiver	T1OUT
Normal Operation (AutoShutdown Disable)	Н	Н	х	Active
Normal Operation (AutoShutdown)	Н	L	YES	Active
Normal Operation (AutoShutdown)	Н	L	NO	High-Z
Shutdown	L	Х	X	High-Z

■ DETAILED DESCRIPTION (Cont.)

Figure 1 depicts valid and invalid RS-232 receiver voltage levels. INVALID indicates the receiver input's condition, and is independent of FORCEON and FORCEOFF states.

Fig.1 Shutdown Input Levels

When shutdown, the UTC **UTRS3227**'s charge pumps are turned off, V+ decays to V_{CC} , V- decays to ground, the transmitter output is disabled (high impedance). The time required to exit shutdown is typically 100 μ s.

Fig.2 Shutdown Input Timing

■ TYPICAL APPLICATION CIRCUIT

Fig.3 Application Circuit

Table 3. Required Capacitor Value

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0 ~ 3.6	0.22	0.22	0.22
3.15 ~ 3.6	0.1	0.1	0.1
4.5 ~ 5.5	0.047	0.33	0.047
3.0 ~ 5.5	0.22	1.0	0.22

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.