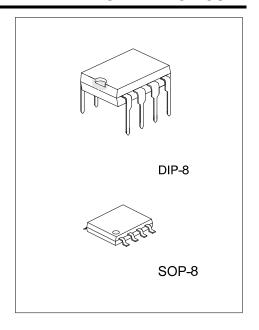
UNISONIC TECHNOLOGIES CO., LTD

UTR2117

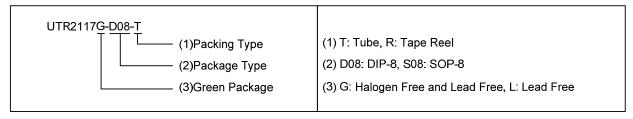
Advance

LINEAR INTEGRATED CIRCUIT

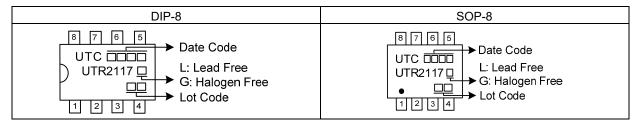

HIGH SIDE DRIVER

■ DESCRIPTION

The UTR2117 are high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized mono-lithic construction. The logic input is compatible with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side or low-side configuration which operates up to 600V.

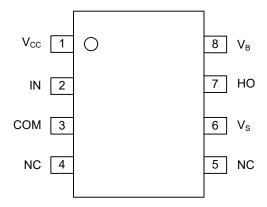

■ FEATURES

- * Floating channel designed for bootstrap operation
- * Fully operational to 600V
- * Tolerant to negative transient voltage, dV/dt immune
- * Gate drive supply range from 10V to 20V
- * Undervoltage lockout
- * CMOS Schmitt-triggered inputs with pull-down
- * Output in phase with input



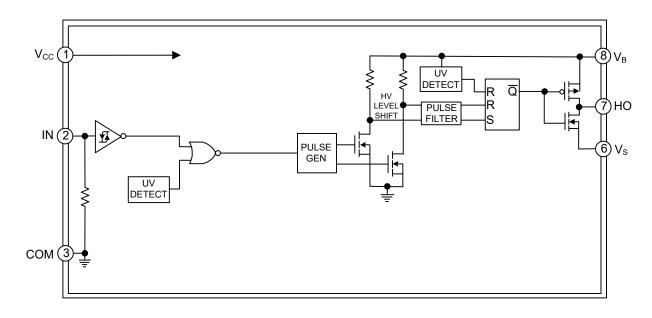
ORDERING INFORMATION

Ordering Number		Dankara	Docking	
Lead Free	Halogen Free	Package	Packing	
UTR2117L-D08-T	UTR2117G-D08-T	DIP-8	Tube	
UTR2117L-S08-R	UTR2117G-S08-R	SOP-8	Tape Reel	



MARKING

<u>www.unisonic.com.tw</u> 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	Vcc	Logic and gate drive supply
2	IN	Logic input for gate driver output (HO), in phase with HO
3	COM	Logic ground
4	NC	No Connect
5	NC	No Connect
6	Vs	High-side floating supply return
7	НО	High-side gate drive output
8	V_{B}	High-side floating supply

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
High-Side Floating Absolute Voltage		V _B	-0.3 ~ 625	V
High-Side Floating Supply Offset Voltage		Vs	V_{B} -25 ~ V_{B} +0.3	V
High-Side Floating Output Voltage		V _{HO}	V_S -0.3 ~ V_B +0.3	V
Low-Side and logic Fixed Supply Voltage		Vcc	-0.3 ~ 25	V
Logic Input Voltage (HIN &LIN)		V _{IN}	-0.3 ~ V _{CC} +0.3	V
Allowable Offset Supply Voltage Transient		dVs/dt	50	V/ns
Power Dissipation	DIP-8		1	W
	SOP-8	P _D	0.625	W
Maximum Junction Temperature		TJ	+150	°C
Maximum Storage Temperature Range		T _{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

■ RECOMMENDED OPERATING RATINGS

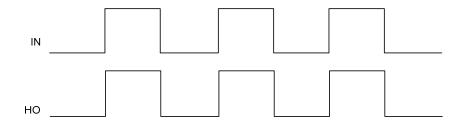
(For proper operation, the device should be used within the recommended conditions. The V_S offset ratings are tested with all supplies biased at 15V differential.)

PARAMETER	SYMBOL	RATINGS	UNIT
High-Side Floating Absolute Voltage	V _B	V _S +10 ~ V _S +20	V
High-Side Floating Supply Offset Voltage	Vs	600 (Note 1)	V
Transient High side floating supply offset voltage	Vst	-50 (Note 2) ~ 600	V
High-Side Floating Output Voltage	V _{HO}	V _S ~ V _B	V
Low-Side and logic Fixed Supply Voltage	Vcc	10 ~ 20	V
Logic Input Voltage (HIN &LIN)	V _{IN}	0 ~ Vcc	V
Ambient Temperature	TA	-40 ~ +125	ŷ

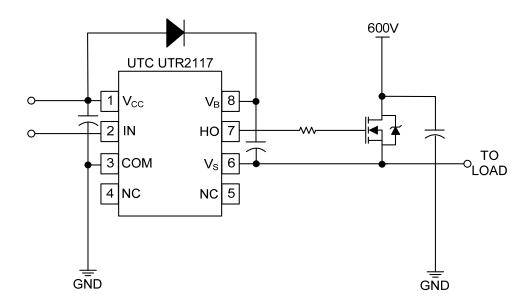
Notes: 1. Logic operational for V_S of -5V to +600V. Logic state held for V_S of -5V to -V_{BS}.

2. Operational for transient negative V_S of COM - 50 V with a 50 ns pulse width. Guaranteed by design. Refer to the Application Information section of this datasheet for more details.

■ THERMAL DATA


PARAMETER		SYMBOL	RATINGS	UNIT
l ti t - Al.it	DIP-8	0	125	°C/W
Junction to Ambient	SOP-8	Θ_{JA}	200	°C/W

■ ELECTRICAL CHARACTERISTICS


[V_{BIAS} (V_{CC} , V_{BS})=15V and T_A =25°C unless otherwise specified. The V_{IN} , V_{TH} , and IIN parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.]

LO.j						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Turn-ON Propagation Delay	t_{on}	V _S =0V, C _L =1000pF		125	200	ns
Turn-OFF Propagation Delay	t _{OFF}	V _S =600V, C _L =1000pF		105	180	ns
Turn-ON Rise Time	t_r	C _L =1000pF		75	130	ns
Turn-OFF Fall Time	t_f	C _L =1000pF		35	65	ns
Logic "1" (HIN) & Logic "0" (LIN) Input Voltage	V _{IH}	V _{CC} =10V~20V	9.5			V
Logic "0" (HIN) & Logic "1" (LIN) Input Voltage	V _{IL}				6	V
High level Output Voltage, V _{BIAS} - V _O	V _{OH}	1 - 2m A		0.05	0.2	V
Low Level Output Voltage, Vo	V_{OL}	I ₀ =2mA		0.02	0.1	V
Offset Supply Leakage Current	I_{LK}	V _B =V _S =600V			50	μΑ
Quiescent V _{BS} Supply Current	I_{QBS}	\\ -0\\ az\\		50	240	μΑ
Quiescent V _{CC} Supply Current	Iqcc	V _{IN} =0V or V _{CC}		70	340	μΑ
Logic "1" Input Bias Current	II _N +	V _{IN} = V _{CC}		20	40	μΑ
Logic "0" Input Bias Current	II _{N-}	V _{IN} =0V			5	μΑ
V _{BS} Supply Undervoltage Positive Going Threshold	V _{BSUV+}		7.6	8.6	9.6	٧
V _{BS} Supply Undervoltage Negative Going Threshold	V_{BSUV}		7.2	8.2	9.2	٧
V _{CC} Supply Undervoltage Positive Going Threshold	V _{CCUV+}		7.6	8.6	9.6	V
Vcc Supply Undervoltage Negative Going Threshold	Vccuv-		7.2	8.2	9.2	V
Output High Short Circuit Pulsed Current	l ₀₊	Vo=0V	200	290		mA
Output Low Short Circuit Pulsed Current	lo-	Vo=15V	420	600		mA

■ TIMING DIAGRAM

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.