

UNISONIC TECHNOLOGIES CO., LTD

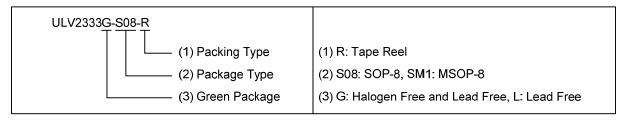
ULV2333 Preliminary CMOS IC

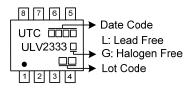
MICRO-POWER, ZERO-DRIFT, RAIL-TO-RAIL INPUT/OUTPUT CMOS DUAL OPERATIONAL **AMPLIFIERS**

DESCRIPTION

The UTC ULV2333 CMOS dual operational amplifiers provide very low offset voltage and zero-drift over time and temperature.

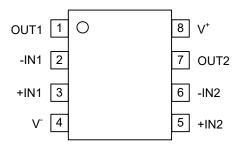
The miniature, high precision, low quiescent current amplifiers offer high-impedance inputs that have a wide input common mode range of 100mV beyond the rails and rail-to-rail output that swings within 35mV of the rails. Single or dual supplies as low as 1.8V (±0.9V) and up to 5.5V (±2.75V) may be used. They are optimized for low voltage, single or dual supply operation.


The UTC ULV2333 offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.


- * Supply Voltage Range: 1.8V ~ 5.5V * Supply Current: 80µA/Amplifier (Typ.)
- * Low Offset Voltage: 25µV (Max.)
- * Rail-to-Rail Input / Output
- * Slew Rate: 0.25V/µs (Typ.)

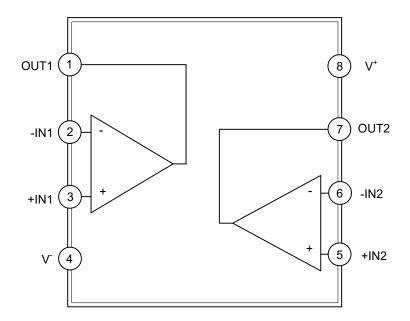
ORDERING INFORMATION

Ordering	Number	Doolsono	Packing	
Lead Free	Halogen Free	Package		
ULV2333L-S08-R	ULV2333G-S08-R	SOP-8	Tape Reel	
ULV2333L-SM1-R	ULV2333G-SM1-R	MSOP-8	Tape Reel	



MARKING

SOP-8 MSOP-8


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	OUT1	Output of 1 AMP		
2	-IN1	Inverting input of 1 AMP		
3	+IN1	Non-inverting input of 1 AMP		
4	V-	Negative power supply		
5	+IN2	Non-inverting input of 2 AMP		
6	-IN2	Inverting input of 2 AMP		
7	OUT2	Output of 2 AMP		
8	V ⁺	Positive power supply		

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ - V-	6.0	V
Input Voltage	V_{IN}	V^{-} - 0.3 ~ V^{+} + 0.3	V
Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ - V-	1.8 ~ 5.5	V
Operating Free-Air Temperature	T _{OPR}	-40 ~ +125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}=1.8\sim5.5V, R_{L}=10k\Omega \text{ connected to } V^{+}/2, \text{ and } V_{CM}=V^{+}/2, V_{OUT}=V^{+}/2, T_{A}=25^{\circ}C, \text{ unless otherwise specified})$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current/Amplifier	ΙQ	I _{OUT} =0		80	148	μΑ
Power Supply Rejection Ratio	PSRR	V+=1.8V ~ 5.5V	93	120		dB
Input Offset Voltage	Vos			14	25	uV
Input Bias Current	I_{B}			130		pА
Input Offset Current	los			140		pА
Common-Mode Voltage Range	V _{CM}		V⁻-0.1		V+-0.1	V
Common-Mode Rejection Ratio	CMRR	V _{IC} =0V ~ 5V	89	110		dB
Output Voltage Swing from Rail	Vo	R _L =10kΩ		24	35	mV
Large Signal Voltage Gain	A_V	R _L =10kΩ	95	121		dB
Short-Circuit Current	Isc	Sourcing, V _O =V ⁺		-32		mA
		Sinking, V _O =V ⁻		38		mA
Slew Rate	SR	G _V =1		0.25		V/µs
Gain-Bandwidth Product	GBW	C _L =100pF		350		KHz
Input-Referred Voltage Noise	e _n	f=0.1kHz~10Hz		2		nV/ √Hz

Note: Specified by design and characterization. Amplifiers are 100% production screened at 25°C to reduce defective units.

TYPICAL APPLICATION CIRCUIT

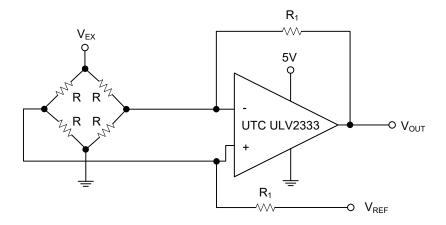


Figure 1. Bridge Amplifier Configuration

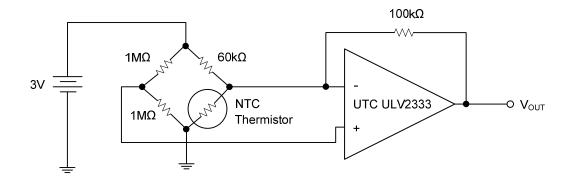


Figure 2. Thermistor Measurement

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.